Proof that the single-variable linear-regression predictor derived using the general matrix-based
multiple regression algorithm gives the same results as the original Pyret implementation.

Given: a set of inputs {z, ...} and their corresponding outputs {y, ...}.

Let

Using the multiple-regression algorithm, we get

B= [g] — (XTX)'XTY. (1)
and the predictor function is y = o + Sz.
We have
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We then have
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The adjoint of a matrix is the transpose of its cofactor matrix. So
adj XTX = (cof XTX)"
But cof X7 X is diagonally symmetric, so its transpose is itself. So
adj XTX = cof XTX
The inverse of a matrix is its adjoint divided by its determinant. So
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Putting all this in (1), we have
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Back to the original Pyret implementation. There we have
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But these match exactly the values for o, 8 in (2). QED.



