Proof that the single-variable linear-regression predictor derived using the general matrix-based multiple regression algorithm gives the same results as the original Pyret implementation.

Given: a set of inputs $\{x, \ldots\}$ and their corresponding outputs $\{y, \ldots\}$.
Let

$$
X=\left[\begin{array}{ll}
1 & x \\
\cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot
\end{array}\right], Y=\left[\begin{array}{l}
y \\
\cdot \\
\cdot
\end{array}\right]
$$

Using the multiple-regression algorithm, we get

$$
B=\left[\begin{array}{l}
\alpha \tag{1}\\
\beta
\end{array}\right]=\left(X^{T} X\right)^{-1} X^{T} Y
$$

and the predictor function is $y=\alpha+\beta x$.
We have

$$
\begin{gathered}
X^{T}=\left[\begin{array}{lll}
1 & \cdot & \cdot \\
x & \cdot & .
\end{array}\right] \\
\therefore X^{T} X=\left[\begin{array}{lll}
1 & \cdot & \cdot \\
x & \cdot & \cdot
\end{array}\right]\left[\begin{array}{ll}
1 & x \\
\cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot
\end{array}\right]=\left[\begin{array}{cc}
n & \Sigma x \\
\Sigma x & \Sigma x^{2}
\end{array}\right]
\end{gathered}
$$

We then have

$$
\begin{aligned}
\operatorname{det} X^{T} X & =n \Sigma x^{2}-(\Sigma x)^{2}=\Delta \text { (say) } \\
\text { and } \quad \operatorname{cof} X^{T} X & =\left[\begin{array}{cc}
\Sigma x^{2} & -\Sigma x \\
-\Sigma x & n
\end{array}\right]
\end{aligned}
$$

The adjoint of a matrix is the transpose of its cofactor matrix. So

$$
\operatorname{adj} X^{T} X=\left(\operatorname{cof} X^{T} X\right)^{T}
$$

But cof $X^{T} X$ is diagonally symmetric, so its transpose is itself. So

$$
\operatorname{adj} X^{T} X=\operatorname{cof} X^{T} X
$$

The inverse of a matrix is its adjoint divided by its determinant. So

$$
\left(X^{T} X\right)^{-1}=\frac{\operatorname{adj} X^{T} X}{\Delta}=\left(\frac{1}{\Delta}\right)\left[\begin{array}{cc}
\Sigma x^{2} & -\Sigma x \\
-\Sigma x & n
\end{array}\right]
$$

Putting all this in (1), we have

$$
\begin{aligned}
B & =\left(\frac{1}{\Delta}\right)\left[\begin{array}{cc}
\Sigma x^{2} & -\Sigma x \\
-\Sigma x & n
\end{array}\right]\left[\begin{array}{lll}
1 & \cdot & \cdot \\
x & \cdot & \cdot
\end{array}\right]\left[\begin{array}{l}
y \\
\cdot \\
\cdot
\end{array}\right] \\
& =\left(\frac{1}{\Delta}\right)\left[\begin{array}{cc}
\Sigma x^{2} & -\Sigma x \\
-\Sigma x & n
\end{array}\right]\left[\begin{array}{c}
\Sigma y \\
\Sigma x y
\end{array}\right] \\
& =\left(\frac{1}{\Delta}\right)\left[\begin{array}{c}
\Sigma x^{2} \Sigma y-\Sigma x \Sigma x y \\
-\Sigma x \Sigma y+n \Sigma x y
\end{array}\right]
\end{aligned}
$$

$$
\begin{align*}
\therefore \alpha & =\frac{\Sigma x^{2} \Sigma y-\Sigma x \Sigma x y}{n \Sigma x^{2}-(\Sigma x)^{2}} \\
\text { and } \beta & =\frac{n \Sigma x y-\Sigma x \Sigma y}{n \Sigma x^{2}-(\Sigma x)^{2}} \tag{2}
\end{align*}
$$

Back to the original Pyret implementation. There we have

$$
\begin{aligned}
\beta & =\frac{\Sigma x y-\frac{\Sigma x \Sigma y}{n}}{\Sigma x^{2}-\frac{(\Sigma x)^{2}}{n}} \\
& =\frac{n \Sigma x y-\Sigma x \Sigma y}{n \Sigma x^{2}-(\Sigma x)^{2}}
\end{aligned}
$$

and

$$
\begin{aligned}
\alpha & =\bar{y}-\beta \bar{x} \\
& =\left(\frac{\Sigma y}{n}\right)-\left(\frac{n \Sigma x y-\Sigma x \Sigma y}{n \Sigma x^{2}-(\Sigma x)^{2}}\right)\left(\frac{\Sigma x}{n}\right) \\
& =\left(\frac{\Sigma y}{n}\right)-\left(\frac{n \Sigma x \Sigma x y-(\Sigma x)^{2} \Sigma y}{n\left(n \Sigma x^{2}-(\Sigma x)^{2}\right)}\right) \\
& =\frac{\Sigma y\left(n \Sigma x^{2}-(\Sigma x)^{2}\right)-n \Sigma x \Sigma x y+(\Sigma x)^{2} \Sigma y}{n\left(n \Sigma x^{2}-(\Sigma x)^{2}\right)} \\
& =\frac{n \Sigma x^{2} \Sigma y-(\Sigma x)^{2} \Sigma y-n \Sigma x \Sigma x y+(\Sigma x)^{2} \Sigma y}{n\left(n \Sigma x^{2}-(\Sigma x)^{2}\right)} \\
& =\frac{n \Sigma x^{2} \Sigma y-n \Sigma x \Sigma x y}{n\left(n \Sigma x^{2}-(\Sigma x)^{2}\right)} \\
& =\frac{\Sigma x^{2} \Sigma y-\Sigma x \Sigma x y}{n \Sigma x^{2}-(\Sigma x)^{2}}
\end{aligned}
$$

But these match exactly the values for α, β in (2). QED.

